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Introduction and Plan
Here I concentrate on basics: spherical blast waves and their

synchrotron emission. See later for jets and other complexities.

√

Shocks and jump conditions (Blandford & McKee 1976)
√

Dynamics
√

Thermodynamics/Fields
√

Radiation
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Shocks and jump conditions

Like Rankine-Hugoniot for normal shocks, relativistic shocks have

jump conditions (Taub). In the ultrarelativistic (γ � 1), strong shock

(M � 1 or Pafter � Pbefore) limit, these are:

n′ = 4γn (1)

U ′ = 4γn · (γ − 1)mpc
2 (2)

(See Landau & Lifshitz vol.6 or BM76)

Note1: primed quantities are in the restframe of the blast wave

Note2: henceforth, we neglect flow structure behind shock: all shocked

gas is in uniform slab behind shock (see BM76 for better way). Right

there, we give up getting answers to better than factor 2.
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Shell equation of motion 1

This is often incorrectly done in literature, so beware.

First: crude version, adiabatic. Initially, shell has Lorentz factor γ0 and

mass M0, so E0 = γ0M0c
2.

A swept-up and shocked mass m has thermal energy γmc2 in the

shock frame (jump condition), and thus γ2mc2 in our frame. Equating

the two, we get two results:
√

Deceleration starts in earnest when shocked gas has similar

energy to initial: E0 = γ0M0c
2 ' γ2

0mc2 =⇒ m = M0/γ0.
√

Once m � M0, we have E0 = γ2mc2 =⇒ γ ∝ m−1/2.
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Shell equation of motion 2

More precisely, and adding energy loss, Ek of the shocked shell in our

frame, and the loss when sweeping up mass dm are (BM76, Panaitescu

and Mészáros 1998):

Ek = (γ − 1)(M0 + m)c2 + (1 − ε)γU ′ (3)

dErad = εγ(γ − 1)c2dm (4)

(so ε = 0 is adiabatic, ε = 1 is fully radiative; only the former is treated

consistently in literature.)

Combine:
dγ

dm
= −

γ2 − 1

M0 + εm + 2(1 − ε)γm
(5)
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Shell equation of motion 3

Radiative, ε = 1.

Note: all light from narrow boundary layer after the shock. This case is

often erroneously used for ε = 0 as well.

dγ

dm
= −

γ2 − 1

M0 + m
=⇒ (6)

(

γ − 1

γ + 1

)(

γ0 + 1

γ0 − 1

)

=

(

M0 + m0

M0 + m

)2

(7)

Two limits:
√

the shell comes to a stop within a few times M0/γ0, so expand

for m � M0: γ ∝ m−1 (γmc = cst.) (!!)
√

for m � M0, non-relativistic. Then β ∝ m−1 (snowplow).
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Shell equation of motion 4

Adiabatic, ε = 0.

dγ

dm
= −

γ2 − 1

M0 + 2γm
=⇒ (8)

γM0 + (γ2
− 1)m = cst. (9)

Rearrange this a bit:

(γ − 1)M0c
2 + (γ − 1)mc2 + γ(γ − 1)mc2 = Ek0 (10)

Two limits:
√

m � M0: third term dominates, so γ ∝ m−1/2.
√

γ ' 1, γ2 ' 1 + 1
2
β2: then 1

2
mv2 = Ek0: Sedov-Taylor.
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Kinematic relation
Funny thing about time between explosion rest frame and our frame.

We measure time as the arrival time difference between light emitted at

explosion and light emitted from radius r by the blast wave:

t(≡ tobs) =
r

βc
−

r

c
=

r

2γ2c

2

β(1 + β)
(11)

If γ varies, then still OK differentially: dt = dr
2γ2c

This leads to counterintuitive r(t), e.g., in uniform medium we have

γ ∝ m−1/2 ∝ r−3/2, so

dt ∝ γ−2dr ∝ r3dr =⇒ r ∝ t1/4 (12)
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Aside: internal shocks
With all these Lorentz factors, how can GRB prompt emission

fluctuations measure engine behaviour?

Two shells, emitted ∆tem apart, with Lorentz factors γ1,2.

Collision at r = c∆tem
β1β2

β2−β1
.

If γ2 ∼ 2γ1 (to get good radiation efficiency), then r ∼ γ2
1c∆tem.

Finally, tobs ∼
r

γ2

1
c
∼ ∆tem (!!)
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A few numbers – Adiabatic
Time to start decelerating in uniform medium of density n:

m(rdec)γ
2
0c2 = E0 =⇒ (13)

rdec =

(

3E0

4πγ2
0nmpc2

)1/3

= 1.8 × 1016

(

E52

n

)1/3

γ
−2/3
0,300 cm(14)

tdec =
rdec

2γ2
0c

= 3.4(E52/n)1/3γ
−8/3
0,300 s (15)

Note strong dependence on γ0 and weak dependence on E and n.

The relativistic phase ends when Ek0 = mc2, or

tnr =

(

3E

4πnmpc5

)1/3

' 0.5 yr

(

E51

n

)1/3

(16)
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Radiation
At rdec, shell density and optical depth small: synchrotron radiation.

Get magnetic field and relativistic electrons from parametrized

ignorance:

U ′

B = εBU ′; U ′

e = εeU
′

Furthermore, we assume the accelerated electrons have some minimum

Lorentz factor γm and a power-law distribution above: n(γ) ∝ γ−p.

Result:

γm = k1γεe
mp

me

(17)

B′ = k2γε
1/2

B (18)
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Synchrotron properties

Roughly, we get the following synchrotron characteristics, with

numbers put in for the spherical adiabatic case (see Rybicki &

Lightman, Wijers & Galama 1999):

νm ∝ γ2
mγB′ ∼ 3 × 1013 Hz t

−3/2

d ε2
e,−1ε

1/2

B,−2E52 (19)

νc ∝ (γt2B′3)−1 ∼ 1 × 1015 Hz t
−1/2

d ε
−3/2

B,−2E
−1/2
52 n−1 (20)

νa ∼ 1 × 109 Hz ε−1
e,−1ε

1/5

B,−2E
1/5
52 n3/5 (21)

Fm ∝ γmB′ ∼ 1mJy ε
1/2

B,−2E52n
1/2 (z = 1)(22)
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Some data 1
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Some data 2
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More models
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Inverse Compton?

Inverse Compton photons are γ2
m times higher in energy, thus even at

same energy output γm times lower in flux, mostly unimportant in

observed spectrum, BUT

τT = NσT ∼ nrσT ∼ 100
· 1017

· 10−24 = 10−7 (23)

γm = γεemp/me ∼ 10 · 10−1
· 103 = 103 (24)

(For spherical adiabatic case at 1 day; scales as t−1/2.)

Compton y ≡ γ2
mτ ∼ 0.1 − 1 is possible =⇒ Inverse compton may

influence early blastwave evolution and may give X-ray excess.

Other cooling processes: neutrinos, CR proton & neutron leaks, ...
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